Optional Steps for Advanced Setup

Esta página contém instruções opcionais de configuração para recursos avançados do PiAware. Clique aqui para obter instruções para construir um novo dispositivo PiAware.

1Etapas opcionais de configuração do PiAware

Alterar a senha do dispositivo

O seu dispositivo PiAware está na Internet, assim, embora seja provável que esteja atrás do seu roteador doméstico (NAT), ainda é uma boa ideia alterar a senha padrão do usuário pi (flightaware).

  • Faça login no dispositivo com o nome de usuário "pi" e senha "flightaware".
  • Insira "passwd" e siga as instruções para modificar a senha da conta.

Enable SSH access

  • For security reasons, SSH access is disabled by default on new PiAware SD card installs, starting with version 3.3. To enable SSH, create an empty file on the /boot partition of the SD card with the filename of “ssh” only (no file extension). When this file is present, SSH will be automatically enabled.

Expandir o sistema de arquivos para cartões SD de grande capacidade

    Se você possuir um cartão SD de grande capacidade, pode expandir o espaço utilizável do seu dispositivo fazendo login e digitando:
    sudo raspi-config
    Em seguida, selecione "Expandir sistema de arquivos" no menu. Quando concluído, saia do menu e digite:
    sudo reboot
    O dispositivo irá reiniciar e o processo estará completo.

Acessar o PiAware via linha de comando

    Você pode verificar o status do PiAware fazendo login e digitando
    sudo piaware-status
    You can restart PiAware by typing:
    sudo systemctl restart piaware

2Configuração de seu PiAware 3 (Incluindo WiFi)


The fully pre-configured FlightAware PiAware 3 SD card includes a default configuration that can be edited or overriden by the user.

Configuration File Options

The configuration file allows the user to configure and set the following:

  • Wired network
  • Wireless (WiFi) network
  • Automatic or manual updates
  • Multilateration (MLAT) output
  • Receiver type (RTL-SDR, Beast, Radarcape or other Mode S/ADS-B source)
  • RTL-SDR gain, PPM and device index
Configuration File Format

The configuration file is a simple plain text format file. You may find it helpful to view the sample piaware-config.txt.

Lines beginning with a "#" are comment lines and are ignored. Blank lines are also ignored. All other lines specify configuration settings.

Se nenhum outro método de configuração (acima) for usado, então, o local do arquivo de configuração é /etc/piaware.conf. Este arquivo é destinado a instalações baseadas em pacotes, que não desejam usar /boot.

For most users: After writing the PiAware image to a SD card, place the SD card in your computer and edit the "piaware-config.txt" file using a text editor (such as Notepad on Windows). Save your changes and eject the SD Card before physically removing it. Place the SD card in your Pi and it will use the new configuration when powered on.

Editing the configuration from the command line

For advanced users: Log in to your Pi by attaching keyboard and screen or by using ssh, then either:

  • Use the "piaware-config" utility to view and change settings. Run "piaware-config <setting> <value>" to make changes. Run "piaware-config" to show the current configuration settings.
  • Edit /boot/piaware-config.txt to make configuration changes, using an editor of your choice (e.g. "sudo nano /boot/piaware-config.txt").
  • For package-based installs, use piaware-config or edit /etc/piaware.conf.

If it is not convenient to remove the SD card and command line access is not possible. an external USB flash drive containing a piaware-config.txt file can be attached to the Pi. Settings in that file override any settings on the SD card. The flash drive should be attached before powering on the Pi and should remain connected while the Pi is running.

To ensure that all configuration changes take effect, please restart/reboot the Raspberry Pi after making changes.

Para obter informações sobre todas as opções de configuração disponíveis, consulte nossa documentação Configuração avançada.

3Antena externa

FlightAware recommends the following for setting up an outdoor antenna.


  • A 1090MHz Antenna is necessary, for shopping locations specific to your country see the PiAware build page here under the Optional section
  • To connect the antenna to your receiver, we recommend using low-loss coaxial cable. Ideally the cable attenuation (signal loss) should be below 6dB. Cable runs with more than 6 dB loss will result in less aircraft messages received and you will not achieve your maximum reception. Try to keep the coaxial cable length as short as possible and preferably less than 15 metres (50 feet).
    • For less than 50 feet (15 meters) LMR-240 or equivalent
    • For more than 50 feet (15 meters) LMR-400 or equivalent
    • Most external antennas have an N-Type female connector. If this is the type of antenna purchased please keep in mind the coaxial cable will require an N-Type male connector for the antenna. The connector should be screwed tight and protected from moisture ingression, which can short the signal, by wrapping the connector with self-amalgamating or self-fusing tape (https://en.wikipedia.org/wiki/Self-amalgamating_tape.)
    • Most DVB-T SDR receivers (example: FlightAware Pro Stick) have a SMA female connector and a SMA male connector will be needed at the opposite end of the cable to connect to the DVB-T SDR receiver, this will need to be verified by reading your DVB-T SDR receiver's specifications.
For more information on cables see https://en.wikipedia.org/wiki/Coaxial_cable
    Antenna location

  • The aircraft signal (1090MHz) is sent from a vertical antenna and the best way to receive the signal is to also have your antenna installed vertically.
  • For optimum reception, the antenna should be installed where it has an unobstructed view of the sky. Buildings, tall trees and high ground can block some of the signal.
  • The longer the antenna cable run, the more signal you will lose.
  • Locating your receiver close to the antenna can minimize the cable length but bear in mind that your Raspberry Pi may need to be physically accessed for upgrades or resolving failures.
    Antenna Mounting Suggestions

    There are many different ways to install the antenna vertically. We recommend that the antenna is securely fixed to avoid being dislodged by high wind or other influences. Below are some ways others have mounted their antenna.

  • Drill a hole in the wall and seal around the cable with flexible sealant.
  • Using a tripod
  • Chimney mount
  • Clamp
  • TV tripod with foot mast
  • Hung by string
  • Taped to wall (scotch, duct, packing, etc.)
  • Wire or metal straps holding a 90° shelving brace to a pipe, metal or wooden extension added then antenna attached
  • Zip tied the mounting plate\; example to a trellis, a pole, etc.
  • Straps holding a PVC pipe to an object, such as a chimney
  • Base made out of PVC pipe, mounting attached to piping with U-bolts
  • Suction cups
  • 2x4 piece of lumber connected to house
  • J pole antenna mount
    Different ways to run the cable from the antenna to the receiver

    Low loss cable, especially for long cable runs, can be up to 15mm in diameter and inflexible. Bear this in mind when planning its route, especially entering a building.

  • Drill a hole in the ceiling/roof/attic/loft and seal around with flexible sealant.
  • Drill a hole in a wooden window sill
  • Run through a wall or roof vent
  • Run through a pipe that leads to the roof (If you drill a hole into the pipe be careful of sharp edges)
  • Through a partially open window,using foam/cloth/etc to create insulation
  • Not recommended: Flat coax cable
    • Flat coax cables typically use an F-type connector and are designed to function with a satellite signal and are not optimized for usage with the 1090MHz frequency. Adapters would need to be purchased to connect with the N-type and SMA type connector.

For images of other setups checkout this discussion post that inspired the above list.
Some users even explain how they avoid Home Owner Associations often found in the USA.

Links Relacionados (PiAware, Raspberry Pi, dump1090, and more)